期刊论文检索
基于卷积神经网络的内燃机声品质评价方法研究
- 【作者】
- 梁凯,赵海军,宋伟志
- 【摘要】
- 为解决内燃机声品质评价中人工效率低、成本高的问题,引入卷积神经网络(convolutional neural network,CNN)模型和声谱分析方法构建了CNN声品质预测模型;同时模型中设计了带通滤波器,可对噪声样本进行自动特征提取,并以此为输入数据,利用自适应时刻估计(adaptive moment estimation,Adam)算法优化网络中各层权重,并将模型用于声品质评价。为证明CNN模型预测的性能,构建了基于心理声学参量的后向传播算法(back propagation,BP)声品质评价模型,并用于对照试验,在样本标签值(人工评价值)处理时,分析了客观评价心理声学参数与评分值的相关性,选取与人工评价结果相关度最大的4个心理声学参量作为BP模型的输入值进行预测。试验结果表明,基于CNN的声品质评价模型能更精确地预测内燃机声品质,并且在CNN预测模型中基于听觉谱的输入评价值比基于时域的短时平均能量、频域的频谱通量输入评价值精度更高。
- 【论文集名称】
- 【会议名称】
- 《内燃机工程》
- 【下载次数】
- 0